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know how �eld theories communicate the bind-
ing energy to a bound state's kinetic mass.
Sect. 2 recalls the diagnostic test of ref. [1].

Sect. 3 assesses the cuto� e�ects of the binding
energy in light-light and heavy-light mesons, and
in quarkonium. The mechanism for generating
the \kinetic binding energy" is reviewed for a
relativistic (continuum) gauge theory in sect. 4
and generalized to lattice gauge theory in sect. 5.
Sect. 6 draws a few conclusions.

2. THE TEST

Let us abbreviate �M := M2 �M1 and �B :=
B2 �B1. Ref. [1] introduces

I :=
2�M �Qq � (�M �QQ + �M�qq)

2M2 �Qq

: (5)

Comparison with eqs. (4) shows that the quark
masses drop out, leaving

I =
2�B �Qq � (�B �QQ + �B�qq)

2M2 �Qq

: (6)

If the lattice action(s) of the quarks were su�-
ciently accurate, all �Bs, and hence I, would van-
ish. (I vanishes trivially when m �Q = mq , even if
�B �Qq 6= 0.)
The numerical results of ref. [1] are shown in

�g. 1. The \inconsistency" I is negative, and jIj
tends to increase with increasing mQ. To explain
both the sign and the magnitude, below I shall
derive an expression for �B.

3. CUTOFF EFFECTS ON �B

Before presenting the analytical result for �B,
it is useful to anticipate the order of magnitude
of �B in each meson|light-light, heavy-light, and
quarkonium. On this basis it turns out that the
quarkonium �B �QQ dominates the numerator in
eq. (6).

3.1. Light-light �B�qq

The binding energy is O(�QCD). With the
Sheikholeslami-Wohlert action, B1 and B2 both
su�er from lattice artifacts of O(�na�QCD).
With the tree-level improvement of used by
ref. [1], n = 1. (With the Wilson action n = 0.)

0 1 2 3 4

aM2Qq

-0.8

-0.6

-0.4

-0.2

0

0.2

I
Figure 1. Plot of the binding-energy \inconsis-
tency" I vs. the heavy-light meson's kinetic mass
aM2 �Qq, for mQ � mq. Adapted from ref. [1].

There is no reason for the artifacts to be identi-
cal, so �B�qq is O(�na�2QCD). This is numerically
small, so �B�qq can be neglected below.

3.2. Heavy-light �B �Qq

The binding energy is again O(�QCD). The
light quark su�ers lattice artifacts as above, but,
when mQ �> 1|as in �g. 1, the heavy quark also
su�ers from (smaller) e�ects of O(�2QCDa=mQ).
Again, even though there is no reason for artifacts
in B1 and B2 to cancel, one sees that �B �Qq is
numerically negligible.

3.3. Quarkonium �B �QQ

The binding energy is now O(mQv
2), where v

denotes the relative �Q-Q velocity. In this nonrela-
tivistic system, the velocity is a pertinent estima-
tor of cuto� e�ects [7,5]. The rest mass is O(v0),
so the action would need absolute accuracy of
O(v2) to obtain relative accuracy of O(v2) in B1.
Both the Wilson and Sheikholeslami-Wohlert ac-
tions achieve this. On the other hand, the kinetic
mass multiplies an O(v2) e�ect, so the action
would now need an absolute accuracy of O(v4) to
obtain relative accuracy of O(v2) in B2. Neither
the Wilson nor the Sheikholeslami-Wohlert action
achieves this [5]; with either of them, one can only
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hope for O(v0) relative accuracy in B2. The er-
ror in B2, and hence in �B �QQ 6= 0, is O(mQv

2),
which is signi�cantly larger than the previous two
estimates.

4. BREIT EQUATION

For nonrelativistic systems the binding-energy
discrepancy can be worked out quantitatively, fol-
lowing a textbook nonrelativistic expansion of
QED [8]. This section veri�es in a relativisti-
cally invariant theory that B2 = B1 = B. The
next section then turns to the lattice theories,
which break relativistic invariance. For conve-
nience, these two section assume that even the
\light" quark q is nonrelativistic.
At leading order the quark{anti-quark inter-

action arises from one-gluon exchange diagrams.
Evaluating these diagrams and developing the
nonrelativistic expansion, one obtains a Hamilto-
nian H = m �Q + mq + H2 + H4 for the quark{
anti-quark system. The leading nonrelativistic
dynamics are given by

H2=
p2�Q

2m �Q
+

p2q

2mq
+ V (r)

=
P
2

2M �Qq

+
p2

2�
+ V (r);

(7)

where V (r) = �CF�=r; r = x �Q � xq, P and p

are center-of mass coordinates and momentum;
� = (m�1

�Q
+ m�1

q )�1 is the reduced mass; and

M �Qq = m �Q+mq . The �rst relativistic corrections
are

H4 = �
(p2�Q)

2

8m3
�Q

�
(p2q)

2

8m3
q

+ V2(r;pQ;pq); (8)

where the non-local potential V2 is given by
Breit's equation [8]. It takes the form

V2(r;pQ;pq) = const � �(3)(r)

+V (r)

"
1�

p �Q �pq + r�2rirjp �Qipqj

2M �Qq�

#

+ spin-dependent:

(9)

The spin-dependent terms and the terms propor-
tional to �(3)(r) are not important here. Full

details are given in xx 83{84 of ref. [8]. To-
gether with the (p2)2 terms in H4, the exhib-
ited part of V2 is responsible for modifying the
bound-state kinetic mass from M �Qq = m �Q + mq

to m �Qq = m �Q +mq + B (as required by Lorentz
invariance).
To proceed one must re-write H4 in center-of-

mass momenta and collect terms quadratic in the
total bound-state momentum P . In the bound
state, combinations of the internal momentum p

and relative coordinate r can be replaced by ex-
pectation values. Collecting all terms, the bound-
state kinetic energy becomes

P
2

2m �Qq

:=
P
2

2M �Qq

�
1�

hT + V i

M �Qq

�

+
PiPj
2M2

�Qq

hrirjV � pipj=�i ;

(10)

where T = p2=2� is the internal kinetic energy.
By the virial theorem the second line vanishes.
Thus, to consistent order in p=M the leading rela-
tivistic corrections H4 generates the right binding
energy B2 = hT + V i =: B for the bound-state
kinetic mass.
More generally, higher-order relativistic e�ects

trickle down to bound-state properties as follows:
the correction of O(v`) provides the O(v`�k) con-
tribution to bound-state properties of O(vk).

5. LATTICE GENERALIZATION

On a hypercubic lattice there can be two cor-
rections to the kinetic energy

E(p) = � � � �
(p2)2

8M3
4

� 1

6
w4a

3
X
i

p4i + � � � ; (11)

for each of p = p �Q, pq. Here

M4 := �

 
@4E

@p2i@p
2
j

!
�1=3

pp=00

; i 6= j (12)

and

w4 := �
1

4

@4E

@p4i

����
pp=00

�
3

4M3
4

: (13)

Unless the action has been improved further than
the Sheikholeslami-Wohlert action,M4 6= M2 and
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w4 6= 0, cf. Appendix A of ref. [5]. These lattice
artifacts �lter through to B2|just as above|
through the terms proportional to PiPjhpipji.
The spatial gluon generates the spin-

independent contribution proportional to V (r) in
eq. (9); on the lattice the nuance is that the ki-
netic mass appears in the bracket. On the other
hand, the temporal gluon generates more compli-
cated terms, but they either depend on spin or
are proportional to �(3)(r). So to work out an ex-
pression for B2, it is enough to maintain eq. (9),
but with masses M2 �Qq and �2 built from M2 �Q

and M2q.
The calculation of the binding energy di�er-

ence �B follows the steps leading to eq. (10). One
�nds an expression that is too cumbersome to
present here. In an S wave, however, it can be
simpli�ed because hpipji = 1

3
�ijhp2i. Then

�B

hT i
= 1

3

8<
:5

"
�2

 
M2

2 �Q

M3
4 �Q

+
M2

2q

M3
4q

!
� 1

#

+ 4a2�2(M
2
2 �Qw4 �Q +M2

2qw4q)

9=
; :

(14)

This is the main new result of this paper. Note
that, as one would have anticipated, the expres-
sion vanishes when w4X = 0 and M4X =M2X .
With an estimate of hT i from potential mod-

els [9] and the lattice masses of the right-most
point in �g. 1, I �nd

I � �
�B �QQ

2M �Qq

� �0:5: (15)

The agreement with the Monte Carlo results is
surprisingly good.

6. CONCLUSIONS

The origin of the anomaly observed in ref. [1]
is the usage of an action accurate only to O(v2).
Thus the relative error in the binding energy B2

of the bound-state kinetic mass is of order
mQv

2=mQv
2 = 1. Meanwhile, the usual binding

energy B1 is indeed valid to leading order in v2.
The test quantity I cleverly isolates B2�B1, and
thus exposes an inconsistency of O(1).

By examining how (approximately) relativistic
�eld theories generate B2, this paper explains the
results found last year [1]. Moreover, the analy-
sis makes the remedy plain: the anomaly is not
expected to appear if quarkonium properties are
computed with an action improved through O(v4)
(or higher). In particular, one requires M4 = M2

and w4 = 0.
Most published applications of ref. [6] use a suf-

�ciently accurate action [7]. Ref. [10] even re-
marks that O(v4) accuracy is essential for a con-
sistent determination of the b-quark mass from
the � spectrum. For four-component fermions
the details required for O(v4) accuracy in quarko-
nium have appeared more recently [5].
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